WS5, a direct target of oncogenic transcription factor Myc, is related to human melanoma glycoprotein genes and has oncogenic potential

Authors:
Reiter F, Hartl M, Karagiannidis AI, Bister K
In:
Source: Oncogene
Publication Date: (2007)
Issue: 26(12): 1769-79
Research Area:
Cancer Research/Cell Biology
Cells used in publication:
Embryonic fibroblast, quail
Species: chicken
Tissue Origin: embryo
Platform:
Nucleofector® I/II/2b
Abstract
We have isolated a gene (WS5) that is specifically expressed at the mRNA and protein level in avian fibroblasts transformed by the v-myc oncogene of avian acute leukemia virus MC29. In a conditional cell transformation system, WS5 gene expression was tightly correlated with v-myc activation. The WS5 gene contains 11 exons, encoding a 733-amino acid protein with a transmembrane region and a polycystic kidney disease (PKD) domain. Near the transcriptional start site, the WS5 promoter contains a cluster of four binding sites for the Myc-Max complex and a binding site for transcription factor C/EBPalpha. Electrophoretic mobility shift assays and chromatin immunoprecipitation showed that Myc, Max and C/EBPalpha bind specifically to these sites. Functional promoter analyses revealed that both the Myc-binding site cluster and the C/EBPalpha-binding site are essential for strong transcriptional activation, and that Myc and C/EBPalpha synergistically activate the WS5 promoter. Ectopic expression of WS5 led to cell transformation documented by anchorage-independent growth. The human melanoma antigen Pmel17, a type I transmembrane glycoprotein, is the mammalian protein with the highest amino acid sequence identity (38%) to WS5. The Pmel17 gene is regulated by the MITF protein, a bHLHZip transcription factor with DNA binding specificities similar to those of Myc/Max. WS5 is also related to human glycoprotein GPNMB expressed in metastatic melanoma cells and implicated in the progression of brain and liver tumors.