Apoptotic cells promote macrophage survival by releasing the anti-apoptotic mediator sphingosine-1-phosphate

Authors:
Weigert A, Johann AM, von Knethen A, Schmidt H, Geisslinger G, Brune B
In:
Source: Blood
Publication Date: (2006)
Issue: 108(5): 1635-42
Research Area:
Immunotherapy / Hematology
Cells used in publication:
Jurkat
Species: human
Tissue Origin: blood
Platform:
Nucleofector® I/II/2b
Abstract
Programmed cell death is vital for a number of pathophysiologic settings. Apoptotic cells are rapidly engulfed by phagocytes (ie, macrophages), which in turn acquire an anti-inflammatory phenotype known as alternative activation or the M2-type. Here we show that interaction of apoptotic cells with macrophages attenuates cell death pathways in the latter. Protection of human macrophages required phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinase 1/2 (ERK1/2), and Ca(2+) signaling, and correlated with Bcl-X(L) and Bcl-2 up-regulation as well as Ser136-Bad phosphorylation. Unexpectedly, neither phagocytosis nor binding of apoptotic debris to the phagocyte was necessary to induce protection. Surprisingly, apoptotic cells released sphingosine-1-phosphate (S1P), mainly derived from sphingosine kinase 2, as a survival messenger. This points to an active role of apoptotic cells in preventing cell destruction in their neighborhood, with implications for innate immunity and inflammation.