Re-establishment of VWF-dependent Weibel-Palade bodies in VWD endothelial cells

Authors:
Haberichter SL, Merricks EP, Fahs SA, Christopherson PA, Nichols TC and Montgomery RR
In:
Blood (2005) 105(1): 145-152
Research Area:
Immunotherapy / Hematology
Platform:
Nucleofectorâ„¢ I/II/2b
Abstract
Type 3 von Willebrand disease (VWD) is a severe hemorrhagic defect in humans. We now identify the homozygous mutation in the Chapel Hill strain of canine type 3 VWD that results in premature termination of von Willebrand factor (VWF) protein synthesis. We cultured endothelium from VWD and normal dogs to study intracellular VWF trafficking and Weibel-Palade body formation. Weibel-Palade bodies could not be identified in the canine VWD aortic endothelial cells (VWD-AECs) by P-selectin, VWFpp, or VWF immunostaining and confocal microscopy. We demonstrate the reestablishment of Weibel-Palade bodies that recruit endogenous P-selectin by expressing wild-type VWF in VWD-AECs. Expression of mutant VWF proteins confirmed that VWF multimerization is not necessary for Weibel-Palade body creation. Although the VWF propeptide is required for the formation of Weibel-Palade bodies, it cannot independently induce the formation of the granule. These VWF-null endothelial cells provide a unique opportunity to examine the biogenesis of Weibel-Palade bodies in endothelium from a canine model of type 3 VWD.