Farnesyltransferase inhibitors interact synergistically with the CHK1 inhibitor UCN-01 to induce apoptosis in human leukemia cells through interruption of both AKT and MEK/ERK pathways and activation of SEK1/JNK

Authors:
Dai Y, Rahmani M, Pei XY, Khanna P, Han SI, Mitchell C, Dent P, Grant S
In:
Blood (2005) 105(4): 1706-1716
Research Area:
Cancer Research/Cell Biology
Cells used in publication:
U-937
Species: human
Tissue Origin: blood
Platform:
Nucleofectorâ„¢ I/II/2b
Abstract
Interactions between the Chk1 inhibitor UCN-01 and the farnesyltransferase inhibitor L744832 were examined in human leukemia cells. Combined exposure of U937 cells to subtoxic concentrations of UCN-01 and L744832 resulted in a dramatic increase in mitochondrial dysfunction, apoptosis, and loss of clonogenicity. Similar interactions were noted in other leukemia cells (HL-60, Raji, Jurkat) and primary acute myeloid leukemia (AML) blasts. Coadministration of L744832 blocked UCN-01-mediated phosphorylation of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK), leading to down-regulation of phospho-cyclic adenosine monophosphate responsive element-binding protein (phospho-CREB) and -p90(RSK) and activation of p34(cdc2) and stress-activated protein kinase/ERK kinase/c-Jun N-terminal kinase (SEK/JNK). Combined treatment also resulted in pronounced reductions in levels of phospho-Akt, -glycogen synthase kinase-3 (-GSK-3), -p70(S6K), -mammalian target of rapamycin (-mTOR), -forkhead transcription factor (-FKHR), -caspase-9, and -Bad. Ectopic expression of Bcl-2 or Bcl-xL but not dominant-negative caspase-8 blocked UCN-01/L744832-mediated mitochondrial dysfunction and apoptosis but did not prevent activation of p34(cdc2) and JNK or inactivation of MEK/ERK and Akt. Enforced expression of myristoylated Akt but not constitutively active MEK significantly attenuated UCN-01/L744832-induced apoptosis. However, dual transfection with Akt and MEK resulted in further protection from UCN-01/L744832-mediated lethality. Finally, down-regulation of JNK1 by siRNA significantly reduced the lethality of the UCN-01/L744832 regimen. Together, these findings suggest that farnesyltransferase inhibitors interrupt the cytoprotective Akt and MAPK pathways while reciprocally activating SAPK/JNK in leukemia cells exposed to UCN-01 and, in so doing, dramatically increase mitochondria-dependent apoptosis.